02816nas a2200193 4500000000100000008004100001100001800042700000500060700001100065700001300076700001300089700001600102245010800118250002200226300000800248490000700256520230800263020005102571 2012 d1 aTaylor Colman1 a1 aLiu B.1 aBruce E.1 aBurns B.1 aJan Stephen00aPrimary scene responses by Helicopter Emergency Medical Services in New South Wales Australia 2008-2009 a17 November 2012. a4020 v123 a
BACKGROUND: Despite numerous studies evaluating the benefits of Helicopter Emergency Medical Services (HEMS) in primary scene responses, little information exists on the scope of HEMS activities in Australia. We describe HEMS primary scene responses with respect to the time taken, the distances travelled relative to the closest designated trauma hospital and the receiving hospital; as well as the clinical characteristics of patients attended. METHODS: Clinical service data were retrospectively obtained from three HEMS in New South Wales between July 2008 and June 2009. All available primary scene response data were extracted and examined. Geographic Information System (GIS) based network analysis was used to estimate hypothetical ground transport distances from the locality of each primary scene response to firstly the closest designated trauma hospital and secondly the receiving hospital. Predictors of bypassing the closest designated trauma hospital were analysed using logistic regression. RESULTS: Analyses included 596 primary missions. Overall the HEMS had a median return trip time of 94min including a median of 9min for activation, 34min travelling to the scene, 30min on-scene and 25min transporting patients to the receiving hospital. 72% of missions were within 100km of the receiving hospital and 87% of missions were in areas classified as 'major cities' or 'inner regional'. The majority of incidents attended by HEMS were trauma-related, with road trauma the predominant cause (44%). The majority of trauma patients (81%) had normal physiology at HEMS arrival (RTS = 7.84). We found 62% of missions bypassed the closest designated trauma hospital. Multivariate predictors of bypass included: age; presence of spinal or burns trauma; the level of the closest designated trauma hospital; the transporting HEMS. CONCLUSION: Our results document the large distances travelled by HEMS in NSW, especially in rural areas. The high proportion of HEMS missions that bypass the closest designated trauma hospital is a seldom mentioned benefit of HEMS transport. These results along with the characteristics of patients attended and the time HEMS take to complete primary scene responses are useful in understanding the benefit HEMS provides and the services it replaces.
a1472-6963 (Electronic)