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Abstract  
 
 
Background: A post-hoc analysis of Saline versus Albumin Fluid Evaluation (SAFE) 
study identified that 2-year mortality was higher in patients with traumatic brain injury 
(TBI) resuscitated with albumin (SAFE-TBI study). Additional data collection and 
analyses of the TBI patients were conducted to explore potential pathological 
mechanisms, primarily the development of raised intracranial pressure (ICP).  
 
Objective: To describe the pre-specified statistical analysis (SAP) plan of this 
subsidiary analysis finalised prior to unblinding treatment allocation and to which the 
investigators adhered during data analysis. 
 
Methods:  The primary analyses on the effect of treatment allocation on ICP will be 
unadjusted. Secondary analyses will be adjusted for same covariates used in SAFE-
TBI. Challenges in the interpretation of repeated measurements over time influenced 
by informative dropout was recognised a priori and will be addressed by conducting a 
hierarchy of analyses categorised by descriptive statistics, average profile plots, 
repeated measures analyses based on mixed models and pattern mixture models 
primarily in the population of patients having a monitor inserted. Progression of 
computerised tomographic scores will be analysed by logistic or ordinal regression. 
Cumulative therapeutic interventions to determine a therapeutic intensity score will 
be determined from sensitivity analyses.  
 
Results:  A comprehensive SAP was developed for additional analyses of the SAFE-
TBI study. This plan provides a pre-determined framework for the complex modelling 

mailto:jmyburgh@george.org.au�


 2 

techniques presented before the effect of treatment on selected primary and 
secondary outcomes were revealed.  
 
Conclusion: We have developed a pre-determined SAP for an additional post hoc 
analysis of the SAFE-TBI II study. This plan will be followed to avoid potential bias 
arising from prior knowledge of the results.  
 
 
Key words: intracranial pressure, SAFE-TBI, post hoc analysis, hierarchy of 
analyses, pattern mixture models   
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Introduction 
 
A post-hoc analysis of 460 patients with traumatic brain injury (TBI) randomised into 
the Saline vs Albumin Fluid Evaluation (SAFE) study1 demonstrated that 2-year 
mortality rates were significantly increased in patients who received 4% albumin for 
intravenous resuscitation in the Intensive Care Unit (ICU) compared to 0.9% saline 
(relative risk of death [RR] 1.63, 95% confidence intervals [CI] 1.20 to 2.38, 
p=0.003).(SAFE-TBI)2 Despite these compelling data to guide the choice of 
resuscitation fluid in patients with TBI, the biological mechanisms for the observed 
differences in mortality are unclear.  
 
The aim of this subsequent post-hoc analysis of SAFE-TBI was to determine whether 
potential biological mechanisms by which albumin was associated with increased 
mortality could be determined. Specifically, this includes the development of raised 
intracranial pressure (ICP) due to intrinsic pathophysiological processes and/or 
associated therapies that may be used to control raised ICP that may be toxic 
independently or within a tiered therapeutic intensity approach. 
 
The statistical challenges of conducting this additional analysis were recognised at 
from the outset during the design of the study. Mixed-effects models, which 
incorporate repeated measurements of a particular continuous endpoint (here ICP) 
over time in the same patients is a well established method for studying the 
relationship between treatment and the endpoint over time. However, given the 
strong association between TBI and mortality for critically ill patients, the occurrence 
of death could result in what is called “informative censoring”. In addition, ICP may 
stop being recorded for various reasons possibly linked to unobserved outcome 
values (e.g. the patient is in such poor state that the clinical team stopped monitoring 
ICP). This situation is known as “informative dropout”. In both cases we have 
informative missing data for the longitudinal process, a violation of the underlying 
assumptions of the mixed linear models that potentially lead to biased results. Rubin 
developed a typology of missing data problems, based on a model for the probability 
of an observation being missing3. Data are described as missing completely at 
random (MCAR) if the probability that a particular observation is missing does not 
depend on the value of any observable variable(s). Data are missing at random 
(MAR) if, given the observed data, the probability that observations are missing is 
independent of the actual values of the missing data. The reasons for dropout are 
usually varied. For example, in 11 clinical trials of similar design, considered by 
Mallinckrodt et al. (2003)4 with the same drug and involving patients with the same 
disease state, the rate of and the reasons for dropout varied considerably. There are 
no universally applicable methods for handling missing data that are missing non-at-
random (NMAR) although sensitivity analyses and simulations can be used to 
evaluate their performance. The main problem is that they need somehow to 
accommodate dropout in the modelling process. Resulting inferential procedures will 
often depend on implicit and untestable assumptions regarding the distribution of the 
unobserved outcome measurements (here ICP or other concomitant therapies) given 
the observed measurements and one can wonder to what extent the lack of 
information due to incompleteness in the data can be recovered.  In the class of 
NMAR methods that accounts for informative dropout, pattern-mixture models or 
PMM5 are appealing as they condition on the dropout pattern and try to extrapolate 
beyond the last measurement time.  
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Other challenges exist in the analysis of the SAFE-TBI data, They include the 
inclusion of post-randomisation variables, testing several endpoints over time 
(multiplicity), accounting for intermittent MAR data and subgroup analyses.  To 
address these, we present an a priori statistical analysis plan that was written by an 
independent statistician not previously involved in the SAFE or SAFE-TBI studies in 
combination with the principal investigators with no access to the follow-up data by 
treatment arm.   
 
Decisions related to the research question(s) were made in a blinded fashion until the 
statistical analysis plan was finalised.  
 
Study overview 
This study was an additional analysis of the SAFE-TBI database that contains 460 
patients randomised into the SAFE study (n=6997) with an admission diagnosis of 
trauma and an associated traumatic brain injury (defined as a post-resuscitation 
Glasgow Coma Score [GCS] <14, plus an abnormal cranial computerised 
tomography [CT] scan consistent with TBI). Of these patients, 231 (50.2%) received 
albumin and 229 (49.8%) received saline for fluid resuscitation in the ICU.  
In addition, post-randomisation data from baseline to 14 days post-randomisation 
were obtained retrospectively from patient records. 
 
Study outcomes 
The primary outcome for this study was the effect of fluid resuscitation on ICP as 
determined by end-hourly measurements for the duration of ICP monitoring until 14 
days post randomisation.  
 
Secondary outcomes were classified into intrinsic and extrinsic variables: 

1. Intrinsic variables relate primarily to intracranial patho-physiological processes 
that were considered to impact directly on raised intracranial pressure: 

a. Changes in intracranial volume represented by the duration and daily 
volume of cerebrospinal fluid drainage via an external ventricular drain 
used concomitantly for ICP monitoring  

b. Coagulopathic processes represented by the highest daily activated 
partial thromboplastin time (APTT) and international normalised ratio 
(INR) and lowest daily platelet count 

c. Alterations in brain swelling represented by a 3-point score (stability, 
progression, regression6) in CT scores for diffuse axonal injury from 
baseline to the first CT post randomisation.   

 
2. Extrinsic variables relate to administered therapies directed at preventing or 

treating intracranial hypertension, defined as an ICP>20mmHg:   
a. Haemodynamic augmentation with catecholamines (noradrenaline, 

adrenaline or dopamine) and/or vasopressin presented by total daily 
dosages.   

b. Suppression of cerebral metabolism with barbiturates (thiopentone with 
and without pentobarbitone) presented by total daily dosages 

c. Sedation and analgesia with intravenous opiates (morphine, fentanyl), 
sedatives (propofol, benzodiazepines) presented by total daily dosages  

d. Hypothermia presented by the average daily temperature  
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e. Osmotherapy with mannitol or hypertonic saline and the time-weighted 
average daily serum sodium 

f. Hyperventilation defined as PACO2 < 28 and the average daily arterial 
carbon dioxide tension (PaCO2).  

 
Two tertiary outcomes were defined: 

1. The determination of a composite therapeutic intensity level (TIL) according to 
a hierarchy described by Marmarou et al 7 from selected secondary extrinsic 
binomial variables 

2. Quantification of global secondary ischaemic/hypoxic brain insults in the 
generation of intracranial hypertension presented by daily mean arterial 
pressure and oxygen tension (PaO2). 

 
 
Study design 
Analysis principles 
Analyses would be conducted using primarily SAS or R software on an intention-to-
treat basis and unadjusted, except where indicated.   

All tests are two-sided with nominal level of α=5%.  
Simple analyses would be conducted first followed by analyses of increasing 
complexity. A hierarchy of analysis beginning with the most plausible mechanisms 
and variables of interest will be determined. 
Missing values will not be imputed unless specified otherwise and p values will not be 
adjusted for multiplicity.  
A blind review of data will be conducted before finalising the statistical analysis plan 
to facilitate the selection and feasibility of the statistical methods. 
 
Study populations 
Three post-randomisation patient populations were considered: 

1. Patients with ICP monitors: n=321 (dataset 1) 
2. Patients with severe TBI  defined as a post resuscitation GCS < 9; n=317 

(dataset 2) 
3. Patients presented in SAFE-TBI2; n=460 (dataset 3) 

 
Given that the primary outcome changes in ICP, dataset 1 would be the principal 
population of interest. 
 
Patient characteristics and comparisons at baseline 

These are presented in Table 1. 
Discrete variables will be summarised by frequencies and percentages.  
Percentages will be calculated according to the number of patients with available 
data.  Where values are missing, the denominator will be added with a footnote in the 
corresponding summary table. Continuous variables will be summarised using either 
mean ± SD or median and interquartile range (IQR). Durations will also be 
summarised by medians and IQR.   
 
Daily measurements and date issues 



 6 

The concept of ‘short day 1’ has been consistently used for daily measurements in 
the SAFE study. Day 1 can be any duration from one hour to 24 hours.  
As a result, some inconsistencies are found between the survival time and the day 
the last measurement for a specific endpoint was taken. For example, ICP may be 
recorded one day after the patient died which can be corrected by systematically 
adding 1 to the survival time. 
 

Primary outcome 

The following hierarchy of analyses will apply to the primary outcome: 
1. Descriptive analysis (Figure 2): 

a. These include box plot or bar plot per study day, overall average plots 
for daily means and average profile plots for daily means per pattern. 

b. Similar plots by treatment arm will be produced once the models 
described in pattern mixture model below have been completed and the 
statistical analysis plan finalised.  

c. Average profile plots will help determine if dropout patterns exists and 
should be modelled. 
 

2. Repeated measures analysis based on mixed models valid under the MAR 
assumption (Table 2a). As stated before MAR means that, conditionally on the 
observed data, missingness is independent of the unobserved measurements  
(i.e. the missingness process can be ignored in the analysis):  

a. This is considered as the reference technique even though the MAR 
assumption might not be satisfied8.  

b. The overall difference between treatment groups will be tested using 
the study day as a factor in the model with possible interaction with 
treatment.   

c. No difference will be tested for each day individually. However, two pre-
defined days of interest will be tested (i.e. day 3 and 7), based on 
probable clinical changes in ICP.  

d. For random effects, a random intercept will be specified and an 
autoregressive AR(1) structure will be used for the error term. Such a 
correlation structure is supposed to capture the time-dependence in the 
data.  In case of convergence problems, a model with independent 
errors will be fitted to avoid further computational issues.  
 

3. Pattern mixture models or PMM9: 
This step will be completed if there is evidence from the data that drop-out or 
censoring (possibly due to death) is not missing at random for a particular 
endpoint. In a standard PMM, data are modelled according to some pattern 
identified through profile plots drawn per dropout category. Our primary option 
was to consider a week as an appropriate cut-off (i.e. dropout is classified 
according to whether the last day of ICP measurement is in week 1 (day 0-7) or 
in week 2 (day 8-14)). Preliminary plots done in a blinded fashion showed that 
either a linear or a quadratic trend was an appropriate pattern. The PMM is 
otherwise based on a mixed linear model with random intercept and slope to 
allow each patient to have their own line. Results for ICP will be reported as 
displayed in Table 2b. Other PMMs based on survival categories (day 0-7, day 
8-28 censored at 28) or a combination of dead/alive at day 28 versus dropout 
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week is also allowed in a second step. These models are more delicate to 
interpret as the conditioning depends on survival that can itself be affected by 
treatment10.  Irrespective of the findings, limitations of this type of modelling will 
be acknowledged in future publications. 

 
The following analysis principles will apply to the primary outcome: 
 

1. The primary analysis will be unadjusted and performed on dataset 1 (patients 
with ICP monitors). This means that only the study day, treatment and 
possibly the interaction study day by treatment will be included in the model. 

2. No imputation for missing ICP data will be carried out for patients in dataset 1 
dying on the first day (approximately 8%). To adjust for intermittently missing 
ICP data, a simple form of imputation may be carried out as a sensitivity 
analysis. 

3. A secondary analysis will be adjusted for the same covariates as described in 
SAFE-TBI (age > 60 years, post resuscitation GCS ≤ 8, pre -randomisation 
systolic blood pressure < 90mmHg and CT evidence of traumatic 
subarachnoid hemorrhage).  

4. Adjustment for potential significant imbalances at baseline will be conducted.  
5. The analysis will be repeated on dataset 2 (patients with severe TBI) or at 

least in those patients of dataset 2 who underwent intracranial pressure 
monitoring. 

 
Secondary outcomes 

A similar strategy to that described for the primary outcome will be used for intrinsic 
and extrinsic variables with the following restrictions/modifications:  
 

1. Repeated measures analysis based on mixed models will be conducted on all 
variables but will be based on nonlinear mixed models for binary/ordinal 
outcomes (Table 3a) 

2. If a particular endpoint depends on study day through a functional form (e.g. a 
linear or quadratic trend), this form will be introduced in the PMM as a 
sensitivity analysis. In the absence of a clear relationship, the time effect will 
be treated as a factor to avoid uncertain parametric specifications. 

3. PMMs will be performed on all continuous variables unless no clear pattern 
emerges from the plots. Similar technical conditions apply. Table 3b specifies 
how the results will be reported for each endpoint; a similar format to the one 
used for ICP (Table 2b) will be used 

4. PMMs will generally not be performed on binary indicators as data are 
generally too flimsy to identify any kind of pattern. If large enough numbers are 
available this restriction will be waived.  

5. Results of PMMs will normally be contrasted with those of repeated measures 
analysis based on a MAR assumption (as defined earlier). 
In addition, other PMMs may also be fitted in a similar fashion to what is 
suggested for ICP. 

6. Changes in CT scan scores (Table 4): 
a. Prior to the analysis of changes in CT scan scores from baseline to the 

first scan post randomisation, 25 randomly selected scans will be 
scored by two independent assessors. Agreement in three related 
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groups within the Marshal score (diffuse axonal injury 2-4, evacuated or 
non-evacuated mass lesions and presence of traumatic subarachnoid 
haemorrhage) will be assessed with a kappa statistic and if insufficient 
(κ<0.5), an independent neuroradiologist will score all CT scans for 
analysis.  

b. In case of poor agreement, CT scans will be rated independently by an 
independent radiologist after study completion. As some of the new 
ratings could be classified as DI, one of the eligibility criteria would ‘de 
facto’ be violated. Such patients will be reclassified as DII at baseline.  

c. As there is no progressive relationship between scores for diffuse 
axonal injury and mass lesions, only changes for diffuse axonal injury 
will be used to determine temporal changes in brain swelling. 

d. Three-level outcome (stability, regression or progression) will be 
modelled by ordinal logistic regression11 or polytomous logistic 
regression if the proportional odds assumption is not met. 

e. The analysis will be based on patients having complete data with the 
exclusion of patients who cannot progress (n=260) as recommended in 
reference [6]. The primary analysis for these two endpoints will be 
adjusted for the baseline measurement. 

f. No imputation will be carried out for the CT scans missing either at 
baseline or post-randomisation. 
 

 
The following analysis principles will apply to the secondary outcomes (apart from CT 
scans): 
 
The primary analysis will be unadjusted for all endpoints.  

1. Using these pattern mixture models, the effect of treatment will be tested in 
dataset 1 (patients with ICP monitoring). As all this modelling is viewed as a 
sensitivity analysis, tests to be carried out cannot be completely specified.  

2. Whether the observed patterns are similar across treatment arms either for all 
patterns or for a specific pattern of interest will be considered.  

3. A secondary analysis will be adjusted for the same factors as the primary 
endpoint. In a second step, a similar analysis will be carried out on patients of 
dataset 2 and dataset 3 having relevant data.  

 
Tertiary outcomes 

During the SAFE study, all aspects of patient treatment were left to the discretion of 
the attending clinician, including strategies and therapies for intracranial 
hypertension. As there is no standardised approached for a tiered therapeutic 
intensity level, individual components of therapies with the tiered therapeutic intensity 
level will be analysed separately.  
 
Additional issues 
The following analysis principles will apply to the secondary outcomes: 

 
1. Missing data: 

a. The exact number of patients involved in the analysis of each extrinsic 
component will be given. 
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b. There will be no imputation for missing data, although a sensitivity 
analysis may be considered.  

 
2. Treatment of outliers, “zeroes” and unreliable total daily dosages 

a. Wide outliers due to transcription errors will be deleted prior to the 
analysis and no imputation made.  

b. Where >50% total daily dosages are recorded as zero (eg for 
thiopentone), modelling as a continuous outcome will not be possible 
and will be treated as a binary endpoint.  
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List of tables 
 
Table 1: Baseline characteristics 
 

Variable Albumin Saline p 
Age - years (mean ± SD)    
Age >55y (mean ± SD)    
Male sex     
APACHE II    
AIS score    
Mean arterial pressure     
Heart rate     
Central venous pressure    
Serum albumin     
Glasgow Coma Score     

GCS (median IQR)    
GCS 3-8    

GCS 9-12    
GCS 13    

GCS motor     
CT Scan Score    

DAI II    
DAI III    
DAI IV    
NEML    

EML    
Traumatic subarachnoid haemorrhage      

Intracranial pressure insertion    
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Table 2: Primary outcome measure (intracranial pressure) 
 
2a: Missing at random (MAR) model  
 

Days Albumin Saline p 

3    
7    

14    
All days 1-14        

 
Data are presented as adjusted means (± standard error)  
 
 
 
 
 
 
Table 2b: Pattern mixture models  
Random 
effect Pattern Albumin Saline  p 

Intercept week1     
 week2     
 Global     
 
Slope  week1     
 week2     
 Global     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 13 

Table 3a: Missing at random (MAR) model for secondary outcomes 
 

Outcome  Days Albumin Saline p 

Intrinsic variables     
APTT 3    

 7    
 14    
 1 - 14    
 

INR  3  
 

 
 7    
 14    
 1 to 14    
 

CSF Drainage 3  
 

 
 7    
 14    
 1 to 14    
 

Extrinsic variables     
TDD morphine * 3    

 7    
 14    
 1 to 14    
 

TDD noradrenaline * 3  
 

 
 7    

 14    
 1 to 14    
 

TDD propofol * 3  
 

 
 7    
 14    
 1 to 14    
 

TDD midazolam * 3  
 

 
 7    

 14    
 1 to 14    
 

Temperature  3  
 

 
 7    
 14    

 1 to 14    
 

Sodium 3  
 

 
 7    

 14    
 1 to 14    
 

PaCO2 3  
 

 
 7    
 14    
  1 to 14    
* transformed by log (x+1) 
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Table 3b: Pattern mixture models for secondary outcomes  
 
Parameter Random effect** Pattern Albumin  Saline  p 
Intrinsic outcomes      
APTT intercept week1     
  week2     
  Global     

 Slope  week1     
  week2     
  Global     
 
INR intercept week1     
  week2     
  Global     

 Slope  week1     
  week2     
  Global     
 
CSF Drainage intercept week1     
  week2     
  Global     

 Slope  week1     
  week2     
  Global     

 Quadratic week1     
  week2     
  Global     
Extrinsic outcomes      
TDD morphine* intercept week1     
  week2     
  Global     
 Slope  week1     
  week2     
  Global     

TDD noradrenaline*  intercept week1     
  week2     
  Global     

 Slope  week1     
  week2     
  Global     

TDD propofol* Intercept week1     
  week2     
  Global     

 Slope  week1     
  week2     
  Global     

TDD midazolam* Intercept week1     
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  week2     
  Global     

 Slope  week1     
  week2     
  Global     

Temperature  Intercept week1     
  week2     
  Global     

 Slope  week1     
  week2     
  Global     
 
Sodium Intercept week1     
  week2     
  Global     

 Slope  week1     
  week2     
  Global     

 Quadratic week1     
  week2     
  Global     
 
PaCO2 Intercept week1     
  week2     
  Global     

 Slope  week1     
  week2     
  Global     

 Quadratic week1     
  week2     
    Global     
* transformed by log (x+1) 
 
ICP = intracranial pressure, TDD = total daily dose, MAP = mean arterial pressure, PMM = pattern 
mixture model       
 
* transformed by f(y)=log(y+1) 
 
** time to be removed if numerical problems observed 
 



 16 

Table 4: CT scans 
 
  Albumin Saline  OR (95% CI) p-value 
Clinical progression yes (n, %)     
 no      
3-level change progression     
 stability     
 Regression      
 
 
 
 
Lis t o f Figures  
 

Figure 1: Trial profile 
Figures 2: Average ICP per treatment arm (dataset 1, 2 ,3) 
Figure 3: ICP profiles by treatment arm for dropout week 1 and 2 
 
 

 
 
 
 

 
 
 


	[8] Molenberhgs G, Thijs H, Jansen J, Beunckens C, Kenward  MG,  Mallinckrodt  C and RJ Carroll (2004). “Analyzing incomplete longitudinal clinical trial data”, Biostatistics 5:445-464

